Cross Laminated Timber in the United States Opportunity for Hardwoods?

The Future of the Hardwood Lumber Industry Conference November 3, 2016

Omar Espinoza

University of Minnesota

Driven to DiscoverSM

CLT Benefits

- Generate economic opportunities
- Reduce CO₂ emissions, fossil fuel consumption, increase energy efficiency
- Increase the use of renewable materials
- Create high value-added uses for wood.
- Increase the economic value of forestlands
- Architectural freedom
- Faster, cleaner construction
- Potential incremental volume 5BBF

Credit: MGA

http://mg-architecture.ca/

NOTABLE PROJECTS IN NORTH AMERICA

Acton Ostry Architects Inc.

Brock Commons Phase 1

- University of British Columbia Point Grey campus
- Student residence
- 18 stories, 173 ft (53 m)
- 162,700 ft² (15,115m²)
- LEED Gold certification
- In construction (scheduled 2017)

AULIGIASE, 125, 12016

T3-Hines

- Minneapolis, Minnesota.
- 7 stories, 85 ft (26 m).
- 220 000 ft² (20 400 m²)
- High-end office space.
- Post and beam with NLT.
- Under Construction.

http://goo.gl/BsRW5t

http://www.startribune.com/developer-breaks-ground-on-modern-all-timber-office-building-in-north-loop-minneapolis/318684551/

Franklin Elementary School

- Franklin, West Virginia.
- 300 students.
- Carbon stored: 1 014 tons.
- Completed January 2015.

http://www.msesarchitects.com/projects/franklin-elementary-school/

http://www.msesarchitects.com/projects/franklin-elementary-school/

Candlewood Hotel

- Redstone, Alabama.
- 4 stories, 58 000 ft²
- 92 rooms.
- Army's privatized lodging.
- Completed 2014.

http://goo.gl/t1GvfM

LendLease

Source: Google Maps

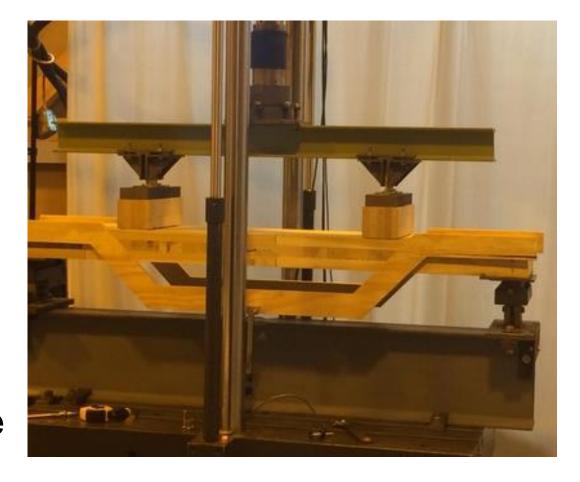
HARDWOOD CLT

Birch CLT - Austria

- Hasslacher Norica Timber / TU Graz
- Birch (Betula pendula)
- $\rho_{12\%MC} = 594 \text{ kg/m}^3 (37 \text{ lb/ft}^3)$
- n=20, 5-ply, x-section ~24x8 in, MUF
- Tested according EN 1995-1-1
 - -MOE = 15,524 MPa (COV=4.3%)
 - -MOR = 38 MPa (COV=11.6%)
 - -Tensile strength of joints 55.7 MPa
 - -Compressive strength \perp =5.8 MPa²

Birch CLT House, Austria

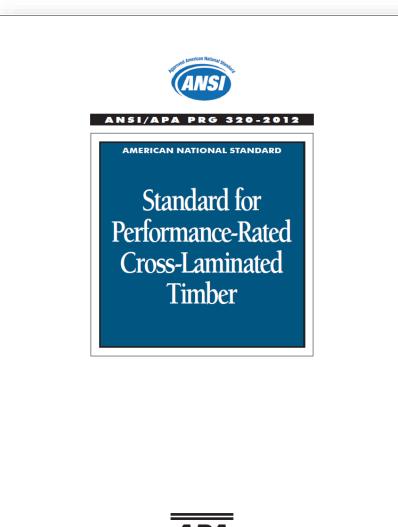
Beech CLT - Switzerland


- Bern University of Applied Sciences
- European beech (Fagus sylvatica)
- $\rho = 690 \text{ kg/m}^3 (43 \text{ lb/ft}^3)$
- n=13, 120 mm (4¾ in), layers=vary
- Values higher than spruce CLT, especially rolling shear (~5x), bending (1.7x) and compression perpendicular to grain (~5x).

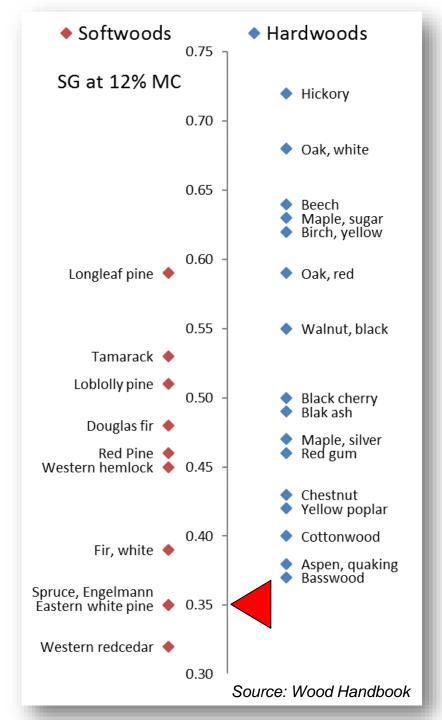
Yellow-Poplar CLT - USA

- VT, WVU
- 6/4 #2 Common Yellow-poplar
- \bullet SG = 0.48-0.50
- n = 24, 72x12x4.2 in, 3-ply, PF
- Tested according PRG320
- Bending stiffness and strength, and resistance to delamination exceeded required values
- Forms adequately strong and durable adhesive bonds

Hybrid Poplar CLT - USA

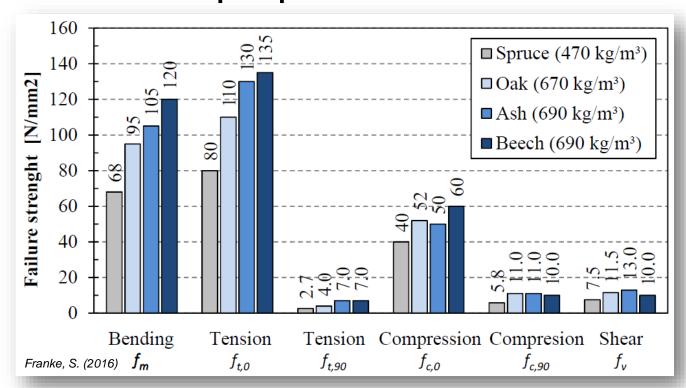

- Oregon State University
- FSC-certified plantation hybrid poplar (Pacific Albus)
- SG = 0.347, No.2&Btr
- n=10, 100x16x31/4 in, 3-ply, PF
- Tested for PRG-320 compliance
- Met/exceeded shear and bending strength for CLT. Did not meet stiffness (MOE) needed

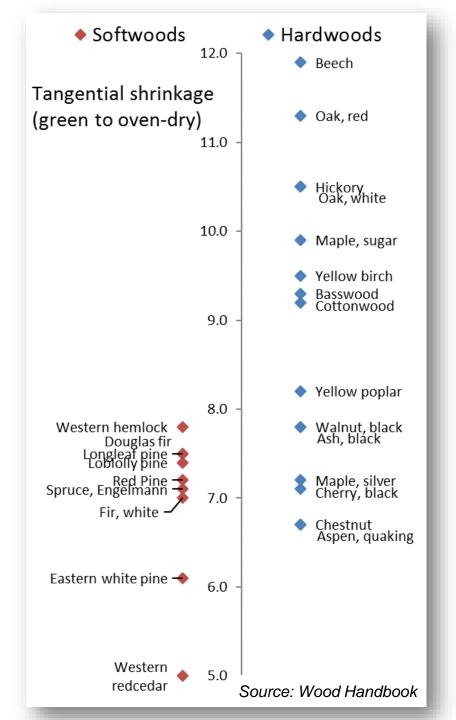
HARDWOOD CLT IN THE U.S. MAJOR ISSUES


"This standard provides requirements and test methods for qualification and quality assurance for performance rated cross-laminated timber (CLT) intended for use in construction applications."

PRG320 - Material Considerations

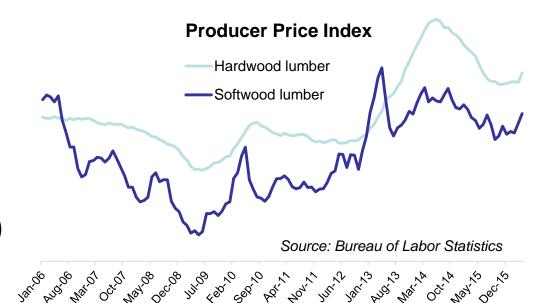
- Any softwood recognized by ALSC
- •Species: SG ≥ 0.35 1 per layer
- Grades: #2&btr (//) , #3&btr (⊥)
- •MC: 12 ± 3%
- Most hardwoods have SG > 0.35
- Hardwoods typically dried to low MCs


PRG320 - Material Considerations


- Perpendicular layer

 http://www.cedarlan.ie/
- Layer thickness: 5/8" ≤ t ≤ 2"
- Width of pieces:
 - Parallel layers w ≥ 1.75 × t (major strength)
 - Perpendicular layers w ≥ 3.5 × t (minor strength)
- For dimension lumber, this excludes:
 - Parallel: 2x2, 2x3; Perpendicular: 1x2,1x3, 2x2, 2x3, 2x4
- Hardwoods commonly sawn to 1" thickness

Material Considerations


- Shrinkage (hardwoods ~30% higher)
- Adhesion issues
- Mechanical properties

Cost Considerations

- Softwood lumber price: \$314
 - -#2&btr West SPF, KD (09.09.2016*)
- Hardwood lumber prices: \$510
 - #2Com 4/4 poplar, KD (08.26.2016**)
- Wood is ~50% of CLT mfg. costs (glue is 10%)
- Europe: spruce CLT ~\$700/m³; beech ~\$3,200/m³
- CLT in general costs 10-15% more than steel/concrete
 - However, structural frame is <20% of total building cost

Hardwood CLT - Procurement Issues

- Is there enough wood to sustain a hardwood CLT industry?
- Average western dimension mill capacity ~180MMBF
- Considering width-thickness ratios, process factors, and lumber prices, some sizes and grades are favored.
- One large CLT plant (~24MMBF**) needs access to ~5 average dimension mills' supplies.
- However, average hardwood sawmill capacity ~6.7MMBF*
 - How much of mill's output suitable for CLT?

Summary

- Research/testing indicates that hardwood CLT for structural use is technically feasible
- Hardwood CLT, in general, has better strength properties.
 - Potential for smaller cross-sections, longer spans
- Major issues: cost, procurement, gluing, grading
- Inclusion in ANSI/APA PRG320
- Maybe specific uses; e.g., high loads, long spans, hybrids
- Industry support and long-term commitment needed!

Endless Stair at Tate Modern ©dRMM

Endless Stair

Thanks!

