Energy Efficiency Considerations

The Future of the Hardwood Lumber Industry Conference

Princeton, WV

November 3, 2016

Dan Wilson, PE
Wilson Engineering Services, PC
www.wilsonengineeringservices.com

Presentation Overview

CHP opportunities

Boiler opportunities

Steam distribution system opportunities

WERC Wood Energy Technical Assistance Team

Menominee Tribal Enterprises Biomass CHP District Energy System

- •\$3.8 M project cost
- •\$0.5 M annual savings
- •85,000 mmBtu/yr wood use (100% of demand)
- •1,000 MWh renewable electric generated (24% of demand)

New Hammermill

•115 tons PM reduction

New Heating-

Supply Line

- •~2,000 If underground steam and hot water piping
- •7 buildings / 150,000 sf connected / 6 dry kilns
- •25 and 9 mmBtu/hr biomass boilers
- •190 kW backpressure steam turbine

Key project components

Residual storage (bark,

8.5 mmBtu/hr boiler

190 kW turbine/generator

270#

steam

MTE Menominee Tribal Enterprises

MTE Menominee Tribal Enterprises

Thermally-led CHP can provide electric at <\$0.02/kWh (energy cost)

Commercially Available Closed Cycle Biomass Power Generation Options

Backpressure steam (~5-10% electrical efficiency)

Courtesy Turboden

Tips:

- Use behind the meter to maximize value of electric generated
- Year-round load helpful to economics
- Lower quality heat needed onsite = better CHP potential

Sizing based on detailed load modeling

Daily average thermal demand (mmBtu/hr) is typically what can reasonably be modeled with available data.

Useful data:

- •Fuel use records/bills
- Recorded heat production
- Portable Btu meter

- Building or process model
- Operating parameters
- Local weather data

CHP word of caution - oversizing

- Many idle turbines at plants
- BPS turbine trips out when dropping below ~25% of capacity
- Sizing needs to understand this

Boiler Opportunities

- Improve efficiency to save money, reduce emissions
 - Combustion controls
 - Boiler tunings
 - Minimize operating pressures

- Fuel flexibility
 - Use the least valuable residual

What is wood?

Constituent	% by Weight (dry basis)		
Carbon (C)	47.1 – 51.6		
Hydrogen (H)	6.1 - 6.3		
Oxygen (O)	38.0 – 45.2		
Nitrogen, Potassium, Calcium, Phosphorous, Sulfur, Magnesium, etc.	~1.0		

Approximately 76-86% is volatiles (e.g. methane, other hydrocarbons)

Wood Boiler Tunings Goal Is Two-Stage Combustion

- Gasification Stage = low O2/temp
 - Flue gas recirculation
 - Control of air / temp
- Combustion Stage = high O2/temp
 - Time / Temp /Turbulence
 - Control of air / temp

WI Sawmill

- Major emissions issues –
 smoke / permitting issues
- Boiler lacks ability to control combustion – measured efficiency of ~25%
- Lack of automation requires full time boiler operator
- 20,000 tons residuals per year used

Added Boiler Control System for ~\$200,000

- Seal combustion chamber and fuel feed (air lock)
- Control fuel feed based on maintaining steam pressure and control air based on fuel feed
- Control ID fan to maintain slight negative pressure in firebox
- Conservative 10% point increase in efficiency by reducing excess air from 1,000% to 100%

- Image of boiler running after system install
- Reduced fuel use by over 5,700 tons/yr
- Savings of \$160,000/yr
- Conservatively under 1.5 yr payback

WV Sawmill Situation

- Major emissions issues black smoke / permitting issues
- Using dust valued at ~\$25/ton
 - Bark sold for \$6/ton
- Boiler lacks ability to control combustion – estimated efficiency of ~38%
- Safety issues with sparks leaving boiler through stack and out of gaps in combustion chamber

Added Combustion Control for \$75,000

- Seal leaks in combustion chamber
- Install new motors and VFDs on
 - fuel feed, ID fan, combustion air fans
- Reduce open tubes in cyclone
- Control scheme
 - Run ID fan to maintain slight negative pressure in combustion chamber (safety fix)
 - Match fuel feed to maintain steam pressure
 - Match combustion fans to fuel feed
- Increased boiler efficiency by 20% points, reduces fuel use from 8,100 to 5,300 tons per year or \$70,000 in savings

Boiler tuning and maintenance are important

Follow up tuning two years later showed baffles on cyclone removed, ash blocking combustion air openings in firebox, O2 readings ~20.6%

Wood Boiler Tunings

- Only boilers with ability to control combustion can be tuned and have it stick for a reasonable period of time
- Must be able to match fuel feed to heat demand, and air flow to fuel feed
- Recommended that boiler operators have a combustion analyzer (~\$1,000)

Please Note: Efficiency number from combustion analyzer is not efficiency over time.

Wood Boiler Tunings - Savings

- A 10% change in excess air is 1% point efficiency
- Example
 - Assuming increase from 60-70%
 - 10,000 tons at \$20/ton = \$200,000/yr boiler fuel
 - Drops to 8,570 tons = \$171,400/yr boiler fuel
 - ~\$29,000 savings
- If boiler does not have combustion controls, regular tuning can save more than this

VA Manufacturing Plant with Dry Kilns

- Manual control of fuel feed to maintain steam pressure at boiler ~90 psig
- ID fan set high to match full fuel/air rates
- Steam pressure immediately reduced by PRV to 30 psig and sent to kilns (600,000 fbm)

Lack of Control Results

- Relief valves on boiler blowing off (see pic)
 - Estimated 4.8 mmBtu/hr or ~\$20/hr
- Higher steam pressure than needed
 - ~2% points eff
 - \$6,000 lost per year
- Operator time spent in boiler room
- Excess air is too high virtually all the time (big loss, but difficult to estimate)

Residual value is \$28/ton for 15% MC wb dust (14.6 mmBtu/ton)

Steam Distribution Opportunities

- Reduce operating pressure
 - 40°F of stack temp = 1% point efficiency
- Steam leaks typically paybacks well under 2 years
- Condensate leaks typically have paybacks well under 4 yrs
- Insulation of steam piping typically has a payback on the order of 1 year
- Insulation of condensate piping typically has a payback on the order of 2 years

Uninsulated condensate tank, with openings in the top

Energy loss of \$4,600 annually, cost of fix at \$8,000 (\$20-25/ton residuals) at SC veneer mill

It is expensive NOT to track efficiency indicators!

Relatively Simple Things to Track

- Makeup water metering
- Fuel use tracking (can be tough)
- Combustion analyzer spot checks
- Boiler feed water metering (flow and temp)

WERC Wood Energy Technical Assistance Team

- Help Facility Owners
 Evaluate and
 Implement Wood
 Energy Projects
- Technology and Vendor Neutral

http://www.na.fs.fed.us/werc/

WERC Wood Energy Technical Assistance Team Results

Item	Annual Value	25-yr Value	
Projects Implemented	45	45	
Annual Energy Usage Evaluated, mmBtu	1,015,967	25,399,183	
Fuel Oil Gallon Equivalents, gallons	7,256,909	181,422,735	
Heating Cost for Evaluated Facilities	\$9,349,033	\$233,725,830	
Combined Costs of Projects	\$66,299,462	\$66,299,462	
Operational Savings Achieved	\$5,857,346	\$146,433,642	
Electric Generated/Offset, kWh	6,306,972	157,674,300	
Woody Biomass Utilization Achieved, green tons	84,081	2,102,019	
Direct Impact to Local Forest Products Industry (\$35/green ton)	\$2,942,826	\$73,570,649	
Net CO2 Reductions, mtonne/yr	36,614	915,351	

- Driver of efficiency in commercial wood energy systems
- Driver of district energy and combined heat and power
- Driver of improved hydronic design practices
- Driver of improved emissions profiles

Example Steam Leaks

Leak	Estimated Loss Rate			Energ	y Loss	Annual Cost of	Annual Cost of
	pph	gpd	gpy	mmBtu/hr	mmBtu/yr	Makeup Water	Steam
Safety Valve Blowoff	4,000	11,511	172,662	4.76	1,712	\$691	\$7,239
Keeler Boiler Room Header	29	83	30,460	0.03	301	\$122	\$1,272
PRV Bypass	5	14	5,252	0.01	51	\$21	\$215
DA Vent / Relief Valve	75	216	78,777	0.09	780	\$315	\$3,298

Example Condensate Leaks

Leak	Estimated Loss Rate			Energ	y Loss	Annual Cost of	Annual Cost
Leak	gpm	gpd	gpy	Btu/hr	mmBtu/yr	Makeup Water	Energy Loss
IBC Boiler Trim	0.5	720	262,800	0.0006	5	\$1,051	\$21
Combined Leaks Kiln Control	0.5	720	262,800	0.0006	5	\$1,051	\$21

